Polar interface phonons in ionic toroidal systems
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We use the dielectric continuum model to obtain the polar (Fuchs-Kliewer like) interface vibration
modes of toroids made of ionic materials either embedded in a different material or in vacuum, with
applications to nanotoroids specially in mind. We report the frequencies of these modes and describe
the electric potential they produce. We establish the quantum-mechanical Hamiltonian appropriate
for their interaction with electric charges. We show that the interaction between an ion lying at the
torus center and these polar vibration modes leads to an important attractive energy, which can
reach 1 eV in the case of materials ionic enough and toroids with a narrow free space about the axis.
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I. INTRODUCTION

It is well established that phonons have a critical im-
pact on the performance of modern electron devices, both
in microelectronics and optoelectronics. Indeed, charge-
carrier mobilities, saturation velocities, thermalization

rates and other related transport properties are influ-
enced by the interaction of these carriers with phonons.
In many applications currently under active develop-
ment, the reduction of the physical dimensions of devices
down to 10 nanometers naturally leads to additional ef-
fects due to the spatial confinement of phonon modes.
For instance, the International Technology Roadmap
for Semiconductors (ITRS) indicates that the driving
of nanometer-scale transistors in sub-22 nm technology
nodes will involve important thermal dissipation issues.!

On the one hand, silicon-based microprocessors and
memory chips with a line width as small as 20 nm can
meet the demand for low-power multifunctional circuits
that can process and store massive amounts of hetero-
geneous data. However, on the other hand, achieving
high performance in devices with physical dimensions
near the 'deeper nanoscale’ regime of 10 nm or beyond
is a challenge for existing technologies. It will require
not only dimensional scaling using novel structures and
processes, but the complementary metal oxide semicon-
ductor (CMOS) approach will require the introduction
of non-silicon materials for the channel, in a similar way
as high-permittivity materials have been introduced as
new gate dielectric media. In that perspective, materials
such as III-V binary and ternary alloys (InP, InGaAs),
which show charge-carrier mobilities much higher than
silicon, are expected to have an important role in the ad-
vancement of semiconductor technology.? ® These semi-
conductors, as well as the III-nitrides, the importance of
which is rapidly growing, are more or less ionic, so that
the interaction of the carriers with optical phonons can
be comparable to or even predominant over that with
acoustic phonons.

One way to integrate those materials into a silicon-
based structure is to selectively grow them in high-aspect
ratio trenches made in the Si substrate. The choice of the
appropriate ratio and other geometrical factors such as
the slope of the sidewalls, as well as the sequence of mate-
rials to be deposited, has to be performed in order to min-
imize the generation of defects at the various interfaces.
One can assume that, in those very small structures, the



characteristics of longitudinal optical (LO) phonons are
significantly modified compared to the case of bulk mate-
rials. For an extensive review of the properties of phonons
in nanostructures, the reader is referred to Ref. 6.

The purpose of this work is the study of large-
wavelength surface or interface optical phonons (Fuchs-
Kliewer like phonons’) in torus-shaped nanostructures
and of their interaction with electric charges. The use of
micrometer-scale toroids as optical resonators has been
investigated by several authors. See, e.g., Refs. 8 and 9.
Obviously, the ring shape of the toroidal systems used
by these authors plays a crucial role in producing ultra-
sharp resonances. Whether optical phonons or electrons
enjoy similar properties in nanotoroids is an interesting
and important question, central to the present work. Of
course, the dimensions relevant to quantum properties
of phonons or electrons are in the range of nanometers
rather than micrometers.

We devote this article to the study of surface or inter-
face optical phonons in ionic toroidal systems with em-
phasis on the case of nanometer dimensions. In the case
of ionic crystals in vacuum, the optical surface phonons
are responsible for the electrical interaction with external
charges located at a distance larger than a few crystal lat-
tice parameters. We use the dielectric continuum model
throughout the work. For a discussion of this model,
the reader is referred to Sec. 7.1 of Ref. 6. As it ne-
glects the change in the ion short-range interactions at
the interface, it is unable to predict the frequency of the
short-wavelength interface phonons. However, it is by
any means appropriate to the description of the electric
field produced by optical phonons at distances from the
interface larger than the lattice parameter, and of the
interaction between the surface or the interface and ex-
ternal electric charges.

The article is organized as follows. We introduce the
toroidal coordinates and the toroidal harmonics in Sec.
II. The interface modes, symmetric and antisymmetric
with respect to reflections on the torus symmetry plane,
are then developed in Sec. III. In Sec. IV, we deal with
the Hamiltonian describing the interface modes and their
interaction with static charges. In the same section, we
give numerical examples applied to a few common more
or less ionic semiconductors. The paper is complemented
by appendices where details of the calculations can be
found.

II. TOROIDAL HARMONICS AND
COORDINATES

In the framework of the dielectric continuum model,
the search for the interface vibrational modes is directly
related to the solution of the Laplace equation with
boundary conditions on the surface of the body under
investigation. The toroidal harmonics are the solutions
appropriate to the case of torus-shaped bodies. We refer
the reader to Ref. 10 for details. These toroidal harmon-
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FIG. 1. (Color online) A few curves in the Ozz plane (¢ = 0)
with either p or n constant and a = 1.

ics are written as functions of the toroidal coordinates.
Different notations are used in the literature. We use
those of Ref. 10 and define the toroidal coordinates, u, 1,
and ¢, by means of the following relations to the Carte-
sian coordinates

x = %sinh,ucos o, (1la)

y= %sinhusin o, (1b)

z= %sinn (1c)
where

A = cosh u — cosn (2)

and a is an arbitrary scale constant. Figure 1 shows a
few curves in the Oxz plane with constant values of either
w or 1. The surfaces with u constant are tori with Oz
as symmetry axis. The intersection of each of these tori
with the plane Oz z gives a circle the center of which is on
the Oz axis at the position x = a coth p and the radius is
R = a/sinh y; this radius increases with decreasing val-
ues of u. The surfaces with 7 constant are spheres with
their center on the Oz axis. The variable ¢ gives the
rotation angle about Oz, the torus axis. The parameter
a constitutes a convenient unit of length, so that, from
now on, we take a = 1. This corresponds to replacing
x/a by x, y/a by y, and z/a by z. If required, physi-
cal dimensions are easily reintroduced at the end of the
calculations. A common practice is to use the notations

s = cosh i (3a)
t = cos. (3b)



We adopt this notation, which leads to A = s —¢.

The shape of the circular toroid under investigation is
entirely defined by the value y;, that the toroidal variable
1 takes on the torus. The radius of circular sections with
axial planes is R, = 1/sinh y;, and the distance from the
center of these sections to the torus axis is p. = coth pp.
Therefore, the torus major and minor diameters are D =
2p. = 2cothu, and d = 2R, = 2/sinh py, respectively.
As the geometrical meaning of uy is not readily apparent,
it is convenient to introduce characteristic parameters
with a more evident meaning. The ratio of the torus
major diameter, 2p., to its minor diameter, 2R, is often
used. We prefer to characterize the torus by 7, the ratio
of the torus internal diameter (that of the hole around its
axis), 2 (p. — R.), to its minor diameter, 2R.. Obviously,

T = cosh pp — 1. (4)

Notice that pup = 0 entails 7 = 0; this means that, for
wy = 0, the central hole of the toroid disappears and the
torus touches the toroid axis. The central hole increases
in size with respect to the section of the torus for in-
creasing values of pp. Also notice the divergent value of
u(p — o0)at p =1, z =0, where p = /224 y? is
the distance to the torus axis, and the discontinuity of
the variable n across the symmetry plane for p < 1. Just
above the symmetry plane, n = 7 while below it, n = —m.
The following functions

1pm,n (,U/? m, (b) = eiinn eiim¢ \/me,n(S) (5)

where T, »(s) denotes a toroidal harmonic (also called
ring function), either

Tmn(s) = P:L'i% (s) (6)
Tm,n(s) = QZL_%(S)7 (7)

constitute complete sets of solutions of the Laplace equa-
tion, which is the equation to solve to obtain the interface
vibration modes in the dielectric continuum approxima-
tion. As usual, the notations P and @ are used for as-
sociated Legendre functions of the first and second kind,
respectively. Detail of the properties of these functions
can be found in a large collection of books and articles.
See, e.g., Refs. 10-12. The functions P;”_%(s) have a

logarithmic singularity at s = oo and Q" (s) at s = 1.
2
Therefore, the functions () are convenient to describe the
potential inside the torus and the functions P, outside it,
at least when no free charges are present. Different def-
initions of the Legendre functions Q™ , (s) are found in
2

the literature, depending on the branch used in the s
complex plane. The reader is referred to Appendix A of
Ref. 12 for a discussion of this point. Here s = cosh u is
real and > 1. Therefore, we choose the definition such
that the cut in Qr’ié(s) is on the left of s = 1. This

is what Mathematica calls type 3 of associated Legendre
functions.13:14

IIT. INTERFACE MODES

For the sake of completeness, let us briefly recall how
the equations obeyed by optical interface phonons with
large wavelength are derived in the framework of the di-
electric continuum model. Retardation effects are ne-
glected and we restrict ourselves to the case of homo-
geneous media with isotropic dielectric constants inside
as well as outside the torus, which is the case of cu-
bic crystals and most non-crystalline materials. We use
Gaussian units throughout the present article. The di-
electric constants depend on w, the electric-field angular
frequency. We denote them by ¢;(w) and €,(w) for in-
side and outside the torus, respectively. In the absence
of free electric charges, the electric displacement obeys
V-D(r) = 0, with the usual matching conditions of elec-
trostatics at the interface. As D(r) = e(w)E(r), with
either ¢(w) = ¢;(w) or e(w) = €,(w), the phonon modes
are given by V- E(r) = 0, ¢(w) = 0, or D(r) = 0 with
€(w) — oo. The solutions with V - E(r) = 0 do not
exist in an infinite medium and correspond to interface
phonon states, which we focus on in this article. The
other solutions are confined (bulk-like) modes and will
be discussed in a forthcoming paper.'® Neglecting retar-
dation allows to write E(r) = —V(r), where 9 (r) is the
electric potential of the interface modes. It is solution of
the Laplace equation V21)(r) = 0 with the usual match-
ing conditions of electrostatics at the interface. All this
has been discussed in detail by several authors for dif-
ferent sample geometries. See, e.g., Refs. 16-18. Also,
see Ref. 6 for a more general discussion on phonons in
nanostructures.

To obtain the normal modes in the case of toroidal sys-
tems, we expand the electric potential in the basis of the
functions defined by Egs. (5), (6), and (7). The matching
conditions apply to each exp(im¢) component separately
so that a normal mode is characterized by a single value
of m. Due to the factor /s —t = /s — cosq in Eq. (5),
this is not true for n and the electric potential of the nor-
mal modes is given by a Fourier expansion in cosnn or
sinnn. The plane Ozy is a symmetry plane for the torus;
the reflection on this plane changes n into —7. Therefore,
there are two types of interface normal modes, which are
either symmetric or antisymmetric with respect to the
reflection on this plane. The electric potential of the
symmetric modes contains terms in cosnn only and that
of the antisymmetric ones, terms in sin n7.

The matching conditions of the electric field and dis-
placement on the toroidal boundary lead to sets of linear
homogeneous equations in the expansion coefficients. For
solutions to exist, the determinant of the equation coeffi-
cients must be zero. This constitutes a secular equation
in €.(w) = €(w)/eo(w) which gives the spectrum of the
optical interface modes. This spectrum consists of dis-
crete series of allowed values of €, (w), €-(w) = €. We
label the solutions of the secular equation with two in-
dices, m, the order of the toroidal function, and [, that
of the secular-equation solution. The eigenvalues of sym-




metric solutions differ from that of antisymmetric solu-
tions so that the solution symmetry should also be spec-
ified. All the eigenvalues €, are functions of 7, the
parameter defining the shape of the torus, only. They
depend neither on the materials constituting the system
nor on its size. The dependence on a single parameter al-
lows a general discussion of the interface modes without
reference to specific materials. Of course, the numerical
calculation of the frequencies, as well as the description of
the polarization, requires the knowledge of the dielectric
constants on both sides of the torus.

In this article, we report the results concerning the
electric field and potential in the case of two torus shapes,
a toroid with a small central hole, 7 = 0.1, and a toroid
with a medium-size central hole, 7 = 1. Some details
of the calculations are given in Appendix A. All the al-
lowed values €,,; tend towards —1 for increasing values
of 7. Indeed, the limit 7 — oo with m finite corresponds
to the case of an infinite circular cylinder with an electric
potential invariant under translations along the cylinder
axis. Then, in cylindrical coordinates, p, 6, ¢, and us-
ing the cylinder radius as unit of length, the solutions
of Laplace equation independent of ( are p™cosnf or
p" sinn# inside torus and p~" cosnf or p~" sin nf outside
it. The matching conditions for these solutions reduce to
€;(w)/eo(w) = —1 whatever the value of n. Of course,
the degeneracy found in the case of the cylinder is lifted
by the curvature of the axis which comes into play when
going from the cylinder to the torus.

A. Modes symmetric with respect to reflection on
torus symmetry plane

Figure 2 illustrates the relation between the eigenval-
ues €p,,; and the shape parameter 7 for 5 symmetric
modes with { =1, 2, or 3 and m =0 or 1.
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FIG. 2. (Color online) Eigenvalues €,,,; versus 7 for 5 sym-
metric modes with [ =1, 2, or 3 and m =0 or 1.

1. Azisymmetric modes (m =0)

These modes are characterized by m = 0. They are
invariant with respect to rotations about the torus axis.
Figure 3 gives contour maps of the electric potential in
the Ozxz plane, with streaming plots of the electric field

FIG. 3. (Color online) Electric-potential contour maps and
electric-field streaming lines in the Oxz plane form = 0,1 =1
interface phonons; top: 7 = 0.1, bottom: 7 = 1. The electric
potential is in arbitrary units. The circles in red give the
intersections of the torus with the Ozz plane and the torus
axis coincides with Oz.



superimposed on them, in the case of [ = 1 phonons with
either a small central hole (7 = 0.1) or a medium-sized
one (7 = 1) while Fig. 4 gives a three-dimensional view of
the potential in the same plane for the same cases. All the
figures of electric potentials and fields in this article are
snapshots taken at a given time of the ion oscillation cy-
cle. A striking feature is the strengthening of the electric
potential and field in the toroid central region, especially
in the case of small 7 values, i.e., tori with small central
empty space, but even in the case of tori with 7 ~ 1. Of
course, the actual value of the electric potential depends
on the torus size and on the nature of the materials in-
side and outside the torus. In the case of inside materials
with relatively high ionicity, the interaction with virtual
m = 0, [ = 1 interface phonons could promote the phys-
ical adsorption of ions or polar molecules on the axis of
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FIG. 4. (Color online) View of the electric potential v of
m = 0, | = 1 symmetric interface phonons in the Ozz axial
plane; top: 7 = 0.1, bottom: 7 = 1. The electric potential
is in arbitrary units. The torus axis, Oz, is horizontal. The
curves in red give the potential on the intersections of the
torus with the Oxz axial plane.

torus-shaped nanostructures in contact with gases or lig-
uids. Tori having some similarity to cylindrical holes or
pores in thin layers, the interaction with polar interface
phonons could strengthen adsorption in these cases too.
We discuss these points in more detail in Sec. IV B.

The m = 0 phonon modes show a number of peaks in
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FIG. 5. (Color online) Electric-potential contour maps and
electric-field streaming lines in the Oxz plane form = 1,1 =1
interface phonons; top: 7 = 0.1, bottom: 7 = 1. The electric
potential is in arbitrary units. The circles in red give the
intersections of the torus with the Ozz plane and the torus
axis coincides with Oz.



the electric potential increasing with the order [ of the
eigenvalue €, ;. Some figures are shown on the web page
Ref. 19. The oscillatory behavior of the electric potential
along the circular intersection with an axial plane can
result in weakening the part played by these phonons in
the mechanism of adsorption of ions or polar molecules
on toroidal nanostructures.

2. Modes with m # 0

The electric potential of interface modes with m # 0
has a spatial oscillatory behavior not only with respect to
rotations about the torus axis as expected from the pres-
ence of a factor cosme or sinmdg in its expression, but
also along the circular intersection with an axial plane.
This is exemplified in Fig. 5, which shows the electric-
potential contour map and the electric-field streaming
lines for phonons with [ = 1 and m = 1, in the case of
tori with inner circles of radius either small, 7 = 0.1, or
medium sized, 7 = 1. Notice that, as a result of symme-
try, the potential is zero on the torus axis. This fact and
the oscillatory behavior of the potential could weaken
the role of these phonons in the physical adsorption of
charged particles or polar molecules on the torus in the
region near its axis. More figures can be seen at URL
Ref. 19.

B. Modes antisymmetric with respect to reflection
on torus symmetry plane

Figure 6 shows the dependence of the eigenvalues €,
upon 7 for 5 antisymmetric modes with [ = 1, 2, or 3 and
m =0 or 1.
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FIG. 6. (Color online) Eigenvalues of €,,,; versus 7 for 5 an-
tisymmetric modes with [ =1, 2, or 3 and m =0 or 1.

FIG. 7. (Color online) Electric-potential contour maps and
electric-field streaming lines in the Oxz plane for m = 0,
I = 1 antisymmetric interface phonons; top: 7 = 0.1, bottom:
7 = 1. The electric potential is in arbitrary units. The circles
in red give the intersections of the torus with the Oxz plane
and the torus axis coincides with Oz.

1. Amisymmetric modes (m =0)

Figure 7 gives contour maps of the electric potential
in the Oxz plane, with streaming plots of the electric
field superimposed on them, in the case of m = 0,1 =1
antisymmetric phonons with either 7 = 0.1 or 7 = 1



while Figure 8 gives a three-dimensional view of the po-
tential in the same plane for the same phonons. Again,
the electric potential and field are particularly strong in
the toroid central region, especially in the case of small
7 values (7 & 0.1), but also in the case of intermediate
values of 7 (7 & 1). Of course, here also, the actual value
of the electric potential depends on the torus size and on
the nature of the materials inside and outside the torus.
In the case of inside materials that are ionic enough, the
interaction with virtual m = 0, [ = 1 antisymmetric in-
terface phonons could promote the physical adsorption
of polar molecules with their dipole moment lying on the
torus axis where the electric field is particularly impor-
tant.

FIG. 8. (Color online) View of the electric potential ¢ of m =
0, I = 1 antisymmetric interface phonons in the Ozz axial
plane; top: 7 = 0.1, bottom: 7 = 1. The electric potential
is in arbitrary units. The torus axis, Oz, is horizontal. The
curves in red give the potential on the intersections of the
torus with the Oxz axial plane.

2. Modes with m # 0

The shape of the electric potential in the case of non-
axisymmetric phonons is illustrated in Fig. 9, which
shows the potential contour map of the m = 1,1 =1
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FIG. 9. (Color online) Electric-potential contour maps and
electric-field streaming lines in the Ozz plane for m = 1,
| = 1 antisymmetric interface phonons; top: 7 = 0.1, bottom:
7 = 1. The electric potential is in arbitrary units. The circles
in red give the intersections of the torus with the Oxz plane
and the torus axis coincides with Oz.



mode. The comparison with Fig. 7 and Fig. 8 shows a
significant increase in the number of potential peaks on
the torus surface in the vicinity of its central hole, espe-
cially if this hole is small. In the case of tori with 7 = 0.1,
up to 4 maxima and 4 minima can be seen in antisym-
metric oscillations with m = 1, while a single maximum
and a single minimum are present in the potential of the
m = 0 mode. This situation is similar to that of the
modes symmetric in respect to the Oxy plane, see Secs.
(ITTA 1) and (ITIT A 2). Here also, the potential is zero on
the torus axis, by reason of symmetry. More figures of
the electric potential of antisymmetric modes can be seen
on the web page Ref. 19.

IV. INTERFACE-PHONON HAMILTONIAN

The study of the interaction between interface phonons
and electrons (or holes) requires a quantum-mechanical
treatment. Therefore we devote this section to the de-
scription of the interface phonons and of their interac-
tions with charged particles in the framework of quantum
mechanics.

A. Derivation of free interface-phonon Hamiltonian

The derivation of the interface-phonon Hamiltonian
in the framework of the dielectric continuum model has
been described in several papers. See, e.g., Chap. 5 and
Chap. 7 of Ref. 6 and the references therein. However,
the description is always based on a particular model
adapted to a given sample shape and often involves un-
necessary lattice sums of dipole interactions. For the
sake of completeness and clarity, we describe in this ar-
ticle how the interface-mode Hamiltonian can be derived
in the framework of the dielectric continuum model us-
ing plain electrostatic theory of dielectrics. The details of
the calculations are given in Appendix B. These calcula-
tions show that the total energy of a free polar phonon,
either an interface phonon or a large-wavelength bulk LO
phonon, can be written as

H= fy(w)/ <f§ + P2> dv, (8)

as expected for a system of harmonic oscillators. In Eq.
(8), P denotes the electric polarization due to the ion
oscillations and w the phonon frequency. The integral is
taken over the whole sample volume. The factor y(w) is

[e(w) — eo] [e(w) = €xd )

M) =2 T 1P o —em]

In Eq. (9), €o denotes the static dielectric constant, €o,
the high-frequency dielectric constant due to the ion
electronic polarization alone, and €(w), the frequency-
dependent dielectric constant measured at the frequency

of the polarization oscillations. In the case of interface
phonons, the frequency w is that given by the secular
equation, w = wy,;. Of course, the values of the dielec-
tric constants are those of the inside or outside medium,
depending on the position of the integration point. The
contribution of the ion electronic polarizability to the
electric polarization is treated in the framework of the
usual adiabatic approximation. This means that the en-
ergy related to the production of the electronic polariza-
tion is not included in the phonon Hamiltonian of Eq.
(8). See Appendix B for more detail. If one of the two
media is not ionic, it does not contribute to the energy
and then, the integral in Eq. (8) is taken over the ionic
part of the system, only. A particularly interesting case
is that of a torus-shaped ionic cubic crystal in vacuum
or in a gas at low or moderate pressure. Then, the inte-
gration in Eq. (8) is restricted to the volume inside the
torus and €(w) = €9 = €x = 1 in the region outside it.

The interface phonons are normal modes of harmonic
oscillators with frequencies different from each other and
from that of the confined modes. Therefore, they are or-
thogonal to each other and to the confined modes and
the phonon Hamiltonian can be written as a sum of sep-
arate Hamiltonians, one for each mode. To obtain the
expression of these Hamiltonians, we must replace the
electric polarization P in Eq. (8) by a form appropriate
to the mode under consideration. Using E = —V and
D = ¢E = E+4+47P shows that the electric polarization of
the m, [ interface mode is related to the electric potential
by

e(me) -1

P=-
47

Vo (10)
where 1 is the Laplace-equation solution for this m,!
mode and wy,;, its angular frequency. The Gauss-
Ostrogradsky theorem facilitates transforming the vol-
ume integrals into integrals on the torus. Taking the
matching conditions at the interface into account and af-
ter some calculations detailed in Appendix B, we come to
the following expression for the Hamiltonian of the m, !
mode

Hm,l == [Ci(wm,,l) - Em,lé-o((")?n,l)]

1 . .
x ]{ (wTin i Vb + i Wa) -ndS. (11)

The index i refers to the torus inside and o to its outside,
n is the outward-oriented normal to the torus, and €y,
is the eigenvalue of the dielectric-constant ratio, solution
of the secular equation deduced from the matching con-
ditions. The integral is taken over the torus with surface
S. For the sake of conciseness we omit to label the po-
tential with the m,[ indices. The notations (; and (, are
used for the values of

2
o) =2l (L20=1) 2



measured inside and outside the torus, respectively.
Again, if the medium either inside or outside the torus
is not ionic, it must be excluded from the energy cal-
culation. Also, recall that there are two types of solu-
tions which are either symmetric or antisymmetric with
respect to the Oxy plane.

In Sec. IIT and Appendix A, we show that the electric
potential of interface phonons, 1; inside torus or 1, out-
side it, can be represented in toroidal coordinates by a
series of Legendre functions such that

Vi = ao,m @i(s, 1, P) (13a)
o = o [Q (30)/ P (50)| wols,m, 8)  (13)
with
@i(s,1,0) = Vs —t cosme

_ oo
o
X QT_”% (s) + Z O;;J cosnn Q;”_% (s)]
n=1 m

(14a)
Pols,1,9) = Vs — t cosme

“+oo
m 6n,m m
X Pfé(s) + Z Bor cosm]Pnfé(s)
n=1 )

(14b)

for solutions symmetric with respect to the Oxy plane

and characterized by the value m of the angular quantum

number. Recall that B, = anm@™ 1(sb)/P7’:‘_l(sb).
2

n—1
The ratios ag, m/ao,m are determined byzthe method de-
scribed in Appendix A. They depend on both quantum
numbers m and [ and on the shape parameter 7, but not
explicitly on the nature of the media inside and outside
the torus. The coefficient «y,, which gives the ampli-
tude of the oscillation, remains to be determined by the
normalization procedure discussed in this section. It has
the dimensions of an electric potential while the functions
vi(s,m, ¢) and p,(s,7n, ¢) are dimensionless. The normal
component of the electric field, —V1; -n, is deduced from
the derivative of ¥; with respect to s and the integration
involved in Eq. (11) is performed numerically, taking into
account that s = s, = cosh p; on the torus. Obviously, in
the case of symmetric solutions, the phonon total energy
is proportional to af ,, + A3 ,,/w?, so that we can write

a(%k 2
Hip=cp | —3 +ag |- (15)
W

For the sake of conciseness, we replace the quantum num-
bers m and [ by a single index k. In Eq. (15), wx denotes
the interface-phonon frequency and the proportionality
factor ¢, is easily deduced from Eq. (11), leading to

ek = [Gi(wr) — exColwr)] I (7). (16)
with

h@Z%%@%@VM%m@ﬂ%- (17)

TABLE I. Value of the integral I (7) for 3 low-order symmet-
ric surface modes

m=0,l=1 m=0,l=2 m=1,1=1
7=0.1 299.89 1001.7 2.7544 x 108
T=1 387.57 2501.5 3487.3

This integral depends on m, [, and 7 only. It does not de-
pend on the explicit values of the dielectric constants of
the materials that form the system under consideration
provided, of course, that they satisfy the secular equa-
tion. Table I gives its value for 7 = 0.1 and 7 = 1, and
three low-order values of m and [. The reference to spe-
cific materials is made through the value of the coefficient
in front of I;(7) in Eq. (16).
As oy i, plays the part of a g variable, we write

20,k = Ekak, (18a)
8Hk 2 Ck fz .
= — = , 18b

&k being a constant to be determined, g, the ¢ variable of
the interface mode k, and pg, the momentum conjugate
to gix. The quantification of the phonon field replaces the
variables by operators obeying the usual commutation
rules

h
D> qrr] = 7 Ok b - (19)

Introducing the annihilation and creation operators ay
and az defined by

qr = aL + ag (20a)
ih
Pk =5 (az - ak) (20Db)

and choosing the value of the normalization constant &
such that

hewr

o (21)

ks =

we obtain

Hy, = hwy, <a£ak + ;) , (22)
which is the usual form for harmonic oscillators. The
parameter &, has the dimensions of an electric potential;
as for ¢y, it has that of a length, which is not readily
apparent in its definition given by Eq. (16). This is due to
the fact that we took the toroidal-coordinate parameter a
equal to 1. Numerical computations require the addition
of an extra factor a in the expression of cy.

We treat the case of antisymmetric phonons in a quite
similar way. However, the terms in the sum of Eq. (14)
are then in sin nn rather than in cos nn and the term with
n = 0 is absent. Therefore, a1 ,, replaces oy, in all the
equations, starting with Eqgs. (13). Finally, this leads to
the same form of harmonic-oscillator Hamiltonian, Eq.
(22).



B. Interaction with a static classical charge

This section is devoted to the study of the interaction
of polar interface modes with electrical charges. This
type of interaction has been studied in several systems
with different geometrical shapes, starting with the pio-
neering work of Lucas, Kartheuser, and Badro?° devoted
to dielectric slabs. Here, we restrict ourselves to classical
charges in interaction with dielectric toroids; the exten-
sion of the fundamental formalism to the case of electrons
or holes is straightforward. Obtaining quantum solutions
for the electron states is less obvious and will be studied
in a forthcoming paper.'®

Consider a classical charge ¢ located at r = (z,y, 2).
We assume that its extension is small enough for the
particle to be considered as a point charge but still larger
than the distance between neighboring ions. Then, the
electric field acting upon the particle is the macroscopic
field E and the energy of interaction with the mode k is
Hr ;. = qi); inside the torus or Hy ; = g1, outside it. Of
course, the potential is measured at the charge position.
Using Egs. (13), (14), (18a), and (20a), we obtain

Hip=Vi(s,n,¢) ((Z;TC + ak) (23)
with
Vk(s7n7¢) = qgk (Pi(s7777¢)7 (243‘)
QT% (sb)
=q&k m 900(57 7, ¢) (24b)

inside and outside the torus, respectively. In Egs. (24),
1, pu, and ¢ denote the charge toroidal coordinates.

The total Hamiltonian for the classical charge at rest
and the interface phonons is

H =2 (Hp+ Hip) (25)
k

where the sum runs over all the interface phonons. It is
easily diagonalized by performing the operator transla-
tion ar, — ap—Vj/hwy. Therefore, the interface phonons,
which are the subject of the present study, give the fol-
lowing contribution

Eo:_ZM (26)

hw
B k

to the energy of a classical charge. In Egs. (26), the zero
of energy is taken at the free-phonon zero-point energy.
Equations (24) allow to write

Vid(s,m,0) = xk °& (27)
with
Xk = #;(s,1,0) (28a)
Q™ (Sb) 2
= 500(37 m, ¢) m (2813)
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depending on the position of the charge, inside or outside
the torus, respectively. This factor yi is dimensionless
and does not explicitly depend on the nature of the me-
dia constituting the system under study but only on the
charge position, the shape parameter 7, and the type
of the interface phonon k (characterized by its symmetry
with respect to the Oxy plane and the quantum numbers
m and [). The second factor, q2§,§, which has the dimen-
sion of an energy squared, is function of the nature of the
materials but not of the charge position. Section IV C2
gives numerical examples of the interaction energy for a
charge on the torus axis.

As for the expectation value of the electric potential,
which is the value observed classically, it is obtained by
replacing the operators aj; and aL by their expectation
value —Vj, /hiwy in Eq. (20a). Then, Egs. (13), (14), and
(18a) give the amplitude of the different k& components
of the electric potential, allowing its numerical computa-
tion.

Finally, in Appendix C, we apply a procedure similar
to that used above to the case of a charged particle in
interaction with large-wavelength bulk LO phonons. The
result coincides exactly with that given by Frohlich?! in
polaron theory. This shows that our procedure allows a
correct treatment of the effect of the ion electronic po-
larizability

C. Numerical examples
1. Surface-phonon frequencies

For the sake of simplicity, consider the case of a toroid
in vacuum or in a gas at moderate pressure. Then
€o(w) = 1 and the interface phonons are simply sur-
face phonons. The secular equation, which gives the fre-
quencies wy, ;, reduces to €;(wm,;) = €m . For the cubic
crystals with a single pair of ions per cell studied in the
present article, it is a good approximation to take

w? —w?
6(0) = e Sk (20)

where €., wr, and wy are the high-frequency dielectric
constant, the frequency of the bulk LLO phonons, and that
of the bulk transverse optical (TO) phonons, respectively.
The former is due to the ion electronic polarizability. The
Lyddane-Sachs-Teller relation

2
wr
b)

(30)

€0 — €0 @
straightforwardly deduced from Eq. (29), relates the
static dielectric constant €y to these three quantities. Re-
placing €;(w) by €, in Eq. (29) and solving it with re-
spect to w? gives

(wm,l>2 _ €0 + |€m,l| (31)

wr €oo + |€m.1




which determines the surface-phonon frequencies. In Eq.
(31), we have taken into account the fact that the solu-
tions of the secular equation, €, ;, are negative. Clearly,
l€m,1| — oo entails wp,; — wr and |, — 0 leads to
Wm, — wr. Therefore, the interface-phonon frequen-
cies lie in the gap between wy and wy. This well-known
result is quite general and not restricted to the case of
toroids. The smaller the absolute value of the eigenvalue
€m,1 1S, the closer to wy, is the interface-mode frequency.
As shown in Figs. 2 and 6, the absolute value of €,
decreases with decreasing values of 7, leading to an in-
crease in the interface-phonon frequencies. This is related
to the decrease of the distance between points located on
the torus about its axis.

In fact, there is a problem with using Eq. (31) in the
calculation of the surface-phonon frequencies for actual
materials, due to the limited accuracy of the known val-
ues of the dielectric constants and bulk phonon frequen-
cies. Often, they do not satisfy the Lyddane-Sachs-Teller
relation. As the calculated surface-phonon frequencies
are close to that of the bulk LO phonons, the error
brought by the use of Eq. (31), while being actually small,
has a large effect on the deviation of the surface-phonon
frequency from that of the bulk LO modes. Even the
sign of this deviation can be wrong, so that the calcu-
lated frequencies would appear above the frequency of
the bulk LO phonons instead of being in the frequency
gap between LO and TO phonons, as they should be.
To remedy this situation, the values of w,,; should be
derived from wjy rather than from wp. This is easily
achieved in eliminating wy in favor of wy, in Eq. (31) by
means of the Lyddane-Sachs-Teller relation. This results
in

(wm,z>2 _ €x €0t |€m 1 (32)

wr, €0 €x + |6m,l| -

This relation has also the advantage of showing why
W, = wr,. Indeed, as |em | <1 and, on the other hand,
€o as well as €5 lie in the range from € = 5 to € =~ 10, an
expansion in powers of |, ;| of Eq. (32) restricted to lin-
ear order constitutes a reasonably good approximation.

It gives
Wm.1 ‘6m1| 1 1
=~ ~1— : ———]. 33

Wwr, 2 <6(>o €0 ( )

Consider the case of a toroid made of CdTe, with a
large major-radius to minor-radius ratio, 7 — oo. Then,
the difference between w; and w,,; can be expected to
have a value among the largest possible ones. However,
using the numerical values of Table II, we obtain from
Eq. (33) wm; =~ 0,979 wy, showing that the existence
of a surface has not much effect on the polar-phonon
frequency. This is due to the small value of the factor
el — ¢, ', 0.043 for CdTe. This reveals the importance
of the screening of the ionic polarization by the electronic
one.

Table II gives the frequencies of some low-index sur-
face phonons in the case of a few more or less ionic cubic
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TABLE II. Experimental values of dielectric constants and
large-wavelength bulk-phonon frequencies, as well as results
of frequency computation, for 3 symmetrical surface phonons
in 4 common ionic semiconductors.

GaAs®  ¢GaNP  AIN®  CdTed
€o 12.8 9.7 8.07 10.2
oo 10.9 5.3 4.25 7.1
hwr 33.14 68.9 80.7 17.45 meV
hwr, 35.34 91.8 111.2 20.92 meV
7=0.1
Fiwo, 1 35.31 91.25 110.35 20.86 meV
hwo 2 35.26 90.54 109.25 20.78 meV
Fwi 1 35.18 89.26 107.30 20.62 meV
T=1
Fiwo,1 35.21 89.69 107.95 20.67 meV
o2 35.15 88.94 106.82 20.58 meV
s 1 35.15 88.92 106.79 20.58 meV
2 Ref. 22.

b Dielectric constants: Ref. 23; phonon energies: Ref. 24.
¢ Dielectric constants: Ref. 25; phonon energies: Ref. 26.

d Ref. 27; the value of hwy, is deduced from that of hwr using the
Lyddane-Sachs-Teller relation.

semiconductors. The computations have been performed
on the basis of Eq. (32), using the values of the bulk-
phonon frequencies and dielectric constants given in the
table. As discussed above, the surface-phonon frequen-
cies are always very close to that of the bulk LO phonons.

2. Energy of interaction of a static classical charge with
symmetric interface phonons

As an example, consider the case of a charge ¢ = e,
where e is the electron charge, on the torus axis and
in interaction with m,l surface phonons only. As in
Sec. IVC1, the toroid is in vacuum, so that €,(w) = 1
and €;(w) = €. Recall that we have taken a, the scale
parameter used in toroidal coordinates, equal to 1. This
means that the lengths are measured in units of a. Then,
the torus size and shape are determined by the value of
a single parameter, 7. For numerical calculations of the
interaction energy, reintroduction of physical units is re-
quired. This is easily performed in noting for example
that D = 2a coth pyp, where D is the major torus diame-
ter. This gives a = 0.2083D for 7 = 0.1 and a = 0.4330D
for 7 = 1.

Equations (26) and (27) lead to write the contribu-
tion of the mode m,! to the energy lowering due to the
interaction between the charge and the surface phonons
as

2¢2
€ §m’le,l

Ep =
m,l
hwm,l

(34)

This quantity can be considered as a product of two fac-



tors. The first one is —x,,,; with (see Eq. (28b))

Xm, = [%(57 m0) S

This is a purely geometrical factor, which does not de-
pend on the nature of the material the toroid is made
of, except of course indirectly through the value of €, ;.
It shows qualitatively how the interaction energy varies
with the position of the charge relative to the torus. It
is dimensionless. Figure 10 shows the behavior of this
factor versus the charge coordinate z for a particle on
the torus axis and m = 0, [ = 1 symmetrical phonons.
Recall that, by reason of symmetry, the electric potential
is zero on the torus axis for modes with m # 0. Table IIT
gives the minimum value of this quantity on the torus
axis for m = 0, = 1 or 2, and 7 = 0.1 or 1. In the
case of [ = 1, —xn, is minimum at the torus center. For
[ = 2, the minimum is reached at z = 0.3582R if 7 = 0.1
and z = 0.9811R if 7 = 1.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

z/IR

FIG. 10. (Color online) Behavior of the contribution of the
m = 0, | = 1 interface phonon to the ground-state energy of a
classical charge on the torus axis as a function of the distance
to the torus center expressed in units of R, the torus minor
radius. The meaning of the dimensionless quantity xo,1 is
discussed in the text; top: 7 = 0.1; bottom: 7 = 1.
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TABLE III. Minimum values on the torus axis of the dimen-
sionless parameter —xm,;, for m =0and [ =1 or [ = 2, and
7T=0lor7T=1.

m=0,l=1 m=0,l=2
7=0.1 -698.3 -609.6
T=1 -112.4 -54.64
The second factor
242
€ m,l
K = : 36
m,l hwm,l ) ( )

which has the dimension of an energy, gives the numerical
importance of the interaction. It does not depend on the
charge position, but on the toroid nature and geometry.
Its computation is somewhat lengthy and cumbersome
but relatively straightforward. It requires the successive
eliminations of variables between Eqs. (21), (16), (17),
(12), and (9). It also requires the reintroduction of the
missing factor a in Eq. (21), which then becomes

2 1 hwm,l
m,l — 4

, 37
4 acmy (37)

as well as the numerical computation of the integral
I,,(7) defined in Eq. (15). The value of this integral
is given in Table I, Sec. IV A, for three low-order sym-
metric phonon modes and 7 =0.1 and 7 = 1.

To perform the numerical calculations, one can either
have recourse to the international system of units or use
the values of physical constants, namely that of the Ry-
dberg and of the Bohr radius. The results for the energy
lowering are presented in Table IV for toroids made of
the same compounds as in Table IT and lying in vacuum.
The toroid major diameter is 10 nm and the shape factor
T is again either 0.1 or 1. The table gives the values of
the factor k,,;, for symmetrical phonons with m = 0,
l=1or2and m =1, = 1. It also gives the mini-
mum energy on the torus axis according to Eq. (34) for
the same phonons, except the m = 1, [ = 1 phonons,
since the electric potential is zero on the torus axis in
the case of m # 0. As an example, for a torus made of
cubic GaN in vacuum, with a major diameter D = 10
nm and 7 = 0.1, which corresponds to a minor diameter
of 9.091 nm, the factor xo 1 is equal to 1.190 meV. At the
torus center, where xo,; = 698.3, this leads to a value of
-0.8309 eV as energy lowering due to the interaction of
the ion of charge e with the m = 0, [ = 1 Fuchs-Kliewer
like phonons. This is a rather strong interaction, able
to substantially modify some properties of the ion, as,
e.g., its vibration frequencies. It also brings an impor-
tant contribution to the energy of physical absorption of
an ion on the axis of a toroid made of ionic material.
In regard to adsorption energy, the interaction with the
electronic polarization probably contributes as much as
or even more than that with the ionic polarization.
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TABLE IV. Factor xm, (see Eq. (36)) and interaction energy with an ion of charge e located at the torus center, for some
common ionic semiconductors, low-order [ and m surface-phonon quantum numbers, and two different geometries, 7 = 0.1 and

T=1
GaAs c-GaN c-AIN CdTe
7=0.1
Ko.1 0.1926 1.190 1.534 0.5995 meV
Ko,2 0.05580 0.3371 0.429414 0.1715 meV
K11 1.906 x 1077 1.105 x 107¢ 1.377 x 107° 5.718 x 1077 meV
EQ, -134.479 -830.9 -1071 -418.6 meV
EQ 5 -25.03 -205.5 -261.8 -76.94 meV
T=1
Ko,1 0.06658 0.3914 0.4914 0.2014 meV
Ko,2 9.927 x 1073 0.05694 0.07058 0.02961 meV
K1,1 7.114 x 1073 0.04078 0.05054 0.02121 meV
EQ, -7.484 -44.00 -55.24 -22.64 meV
EQ, -0.5424 -3.111 -3.857 -1.618 meV

V. CONCLUSIONS

In this article, we describe the polar, Fuchs-Kliewer
like modes of interface vibrations of toroids made of an
ionic material embedded in the bulk of a different sub-
stance or simply, in vacuum. The presence of an interface
does not bring much change to their frequency with re-
spect to that of the bulk large-wavelength LO modes. In
a sense, the Fuchs-Kliewer modes constitute the part of
the LO modes that produce an electric field outside the
body under consideration, i.e., here, the toroid. Even in
moderately ionic crystal this field is rather strong, spe-
cially on the torus axis and for toroids with a small empty
space about the axis. In vacuum, this leads to a strong
interaction between charged particles outside the toroid
and this latter, which could appreciably change some of
their properties, as their optical vibrational spectrum.

Appendix A: Calculation of the interface modes

As discussed in Sec. III, we write the electric potential
of the interface modes symmetric with respect to the Oxy
plane as

—+oo

Yim(8,1,0) = Vs =t cosme Y ap,m cosnn Q) (s)
n=0
(A1)
inside the torus and
400
z/}o,m(sa UB (b) =Vs—t cosmg Z ﬁn,m cosnn P:ln,l (S)
2
n=0
(A2)

outside it. In these equations, the constants a, ,, and
Bn,m remain to be determined. Recall that ¢ = cosn and
s = cosh . The antisymmetric modes are obtained from
the symmetric ones in replacing the cosine functions in

Egs. (A1) and (A2) by sine functions. Of course, the term
n = 0 is absent from the expression of the antisymmetric-
mode potentials. There also exist solutions in sin m¢ but
they can be deduced from the present ones by a simple
rotation about the torus axis and, therefore, can be dis-
carded.

The matching condition for the ¢-tangential com-
ponent of the electric field requires that 0v; ,,,/0¢ =
0o,m [0¢, where s, = cosh py, i.e., the value of the vari-
able s on the toroidal boundary. This results immediately
in

Qm

n—

%(Sb)
P™ (Sb)

n—3

(A3)

ﬂn,m = Onm

so that the electric potential is continuous across the
boundary everywhere on the torus, as expected. As a
consequence, the matching condition for the n-tangential
component of the electric field is also satisfied.

The matching condition for the normal component of
the electric displacement is

81/)1',77L(3b7 7, ¢) _ 8¢o,m(5b; m, ¢)
&r(w) 0sp N dsp

(A4)

with

€ (w)

€o(w)’

(A5)

er(w) =

Using Eq. (A1), the derivative of the inside potential with
respect to s can be written as

Wimlonm) _ Leosmp g oo
aSb 2 \/Sbi_t n=0 o

an_;(Sb)
X Q:?_%(Sb) +2(sp— 1) 8731

(A6)



The derivative of the outside potential has a similar ex-
pression, the @ functions being replaced by P functions
and the o, ,, coefficients by the 3, ,, ones. With these
results, the Fourier expansion in cosn of Eq. (A4) mul-
tiplied by +/sp —t leads to the following infinite set of
homogeneous linear equations coupling o, t0 om—1,m
and ap41,m,

bo,m 0,m + co,m @1,m = 0, (AT7a)
Gy On—1,m + bpm O, + Crom Qg 1,m = 0,
n=12... (A7b)
with
boum = (1= € ()] @ (55) + (1 2m) sy () Q (s1)
+(2m —1) sy w (A8a)
P:n% (sb) ’
3 3
com = g svler) = 11 Q7 () + (1~ 3 ) () Q3 ()
3 P (s) QT (sb)
H(3m) Asb)
and, if n > 0,
anm = (2n —1) s [e(w) — 1] Q:?_%(sb)
+(2m —2n+1) e (w) Qﬁ_%(Sb)
+(2n—2m —1) Py () @y ()
P:l”_% (sp) ’
(A9a)

+22n —2m+1) spe(w) QI 1 (s1)

1
2

B (s0) @71 (sp)
+2(2m—2n—1)s P:L%(Sb) ,
(A9D)
Cnm = (2n 4 3) s [ (w) — 1] QZ%(Sb)
+ (2m —2n — 3) e, (w) Q?Jr% (sp)
+(2n — 2m + 3) Py (s0) Q4 (s0)
P;er%(sb) ’
(A9c)
except for aj ,,, which has an extra factor 2,
arm = 28p [eq(w) — 1] QT% (sp)
+2(2m —1) e (w) Q%"(sb)
P (sp) Q™4 (s0)
+2(1-2m W
(A10)

There exist several methods of solving this type of
three-term recursion formula, or tridiagonal system of
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equations. A straightforward way consists in restricting
the system to a finite number N of equations and, then,
let N increase progressively. The finite system of N equa-
tions has solutions only if the determinant of the coeffi-
cient matrix is equal to zero. This leads to a polynomial
equation in ¢, (w), the solutions of which, €,(w) = €1,
when solved with respect to w, give the frequencies of
the different interface modes. Of course, this last step re-
quires the knowledge of both dielectric constants, inside
and outside the torus. The number of solutions increases
with N, the number of equations kept in the calcula-
tions. Therefore, seeking higher-order solutions requires
to work with a larger number of equations. However,
interaction with acoustic phonons and electrons broad-
ens the interface-phonon frequency so that higher-order
modes probably overlap and their calculation does not
make much sense.

The determinant of a tridiagonal matrix is called a con-
tinuant. Continuants can be evaluated by recursion®®, so
that the computation of the interface-mode frequencies
is relatively simple. It remains to determine the coeffi-
cients a,, ., from Egs. (A7). However, the recursion is
often unstable. A way of avoiding this difficulty con-
sists in transforming Eqs. (A7) into a continued fraction.
Then, standard stable techniques of computing continued
fractions can be used. To obtain a continued fraction,
Eq. (A7Db) is divided by ay, m, leading to

Qp—1,m bn m Cn,m/an,m
= TR =12, ..., (AlL)
Qn m Ap,m Qnitm

where &, m = Qn—1,m/®n,m. By successive substitutions,
we obtain, in the usual continued-fraction notations,

Qp—1,m _ bn,m + - Cn,m/a/n,m - CnJrl,m/anJrl,m
Qnm An,m _ bngim _ bngom T
Ant+1,m An4+2,m

(A12)
We use the modified Lentz’s method described in, e.g.,
Ref. 29 to compute this continued fraction. We begin
with n = 1. The value of &; ,, calculated in this way is
compared to that given by Eq. (A7a) to check the accu-
racy of the value of ¢,.(w) obtained previously from the
zeros of the continuants. In fact, this identification could
be used instead of the search for the zeros of the contin-
uants to obtain the characteristic values of ¢,(w). The
solution of Eq. (A12) is repeated for increasing values of
n till the contributions to the sum over n in Eq. (Al)
become negligible.

Appendix B: Interface-mode potential and kinetic
energies

For the reasons discussed in Sec. IV A, we give here
a somewhat detailed account of the derivation of the
interface-mode Hamiltonian in the framework of the di-
electric continuum model. We restrict ourselves to the
case of cubic crystals with two ions per cell. In this case,



the contribution of the polarization P to the local elec-
tric field E; at the ion equilibrium position is the Lorentz
field, (47/3)P. From D = E + 47P we deduce that
E = 47P/[e(w) — 1]. This allows to write

El =E + %P (Bla)
_4m e(w) +2 (B1b)
3 e(w)—1

We use €¢(w) to denote the frequency-dependent dielectric
constant. Of course, the value of this dielectric constant
is that relevant to the medium under consideration, ei-
ther inside or outside the torus. Obviously, the polariza-
tion is

P = Ne*u+ NaE, (B2)

where N denotes the number of lattice cells per unit vol-
ume, e* the effective charge of the positive ions, u the
relative displacement of the positive ions with respect
to the negative ones, and « the total polarizability of the
crystal cell. Eliminating E; between Egs. (B1b) and (B2)
gives

(1 - %”Na w> P = Ne*u. (B3)

Notice that, in the case of stationary ions (u = 0), Eq.
(B3) reduces to the well-known Clausius-Mossotti rela-
tion. Assuming harmonic oscillations leads to write

pii = e* B — pwiu (B4)

for the equation of motion of the relative displacement
u. In this equation, p is the lattice-cell reduced mass
and pw? the force constant of the short-range interaction
between ions with opposite signs. Using harmonic solu-
tions for E;, P, and u in Eq. (B4) and taking Egs. (B1b)
and (B3) into account, we obtain the following relation
between the oscillation frequency w and the dielectric
constant e(w)

1 [ew) +2wy
2 2 P
=wi— = B
YT 3 e(w)—1—XAe(w) + 2] (B5)
with
*2
wi = 47rNe , (B6a)
L
4

A= ?Na. (B6b)

For the transverse bulk modes €(wy) — 00, so that their
frequency is the square root of

UJ2

3(1i)\)’

while for the LO bulk modes ¢(wy) = 0 and, therefore,
the square of their frequency is

2 2

Wi =wi — (B7)

2
pr

3(1+2)) (B8)

2 2
WL:WO+
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For other values of the frequency w, either due to free
interface oscillations or oscillations forced by an external
electric field, solving Eq. (B5) with respect to e(w) gives

w? — w%
= €so B9
() = e 3k (59)
where
142X\
€ T (B10)

is the high-frequency dielectric constant due to the elec-
tronic polarizability of the ions. The Lyddane-Sachs-
Teller relation,

OJ2

L
€0 = €0 ~ 5 »
wr

(B11)
where ¢y denotes the static polarizability of the medium
under consideration, either inside or outside the torus, re-
sults immediately from Eq. (B9). Equations (B7), (B8),
and (B9) are well known results; see Ref. 6 and refer-
ences therein. However, they are generally obtained in
the framework of studies of particular systems like slabs,
cylinders, and quantum dots. The present developments
show that they are in fact quite general.

The ion potential energy has two contributions. The
first one is related to the short-range interaction. Per
unit volume it is

N
Ugr = 5 ,uwg u?
2 2 2
— o0 <1 Y 6(“)+> P2 (B12)
w2 e(w)—1

The second one is due to the action of the electric force
on the ions. The electric work per unit volume for a
change du of the ion relative position is dW = Ne*E;-du.
This shows that the ion electric potential energy per unit
volume is

2m e(w) +2 (1 A W) P2 (B13)

We treat the ion electronic polarization in the framework
of the usual adiabatic approximation. Its action on the
ion motion appears through its contribution to the local
electric field which is the source of the ion electric poten-
tial energy. Therefore, the contribution of the electronic
polarization to the energy is taken into account by Eq.
(B13). Going beyond the adiabatic approximation would
require a second system, excitons or plasmons for exam-
ple, coupled to the phonons. The free-oscillation frequen-
cies of this system lie at far higher frequency. The en-
ergy of interaction between the electric field and the elec-
tronic polarization is a function of the variables describ-
ing this second system and not of the phonon variables
and, therefore, must not be included in the Hamiltonian
derived in the present article.



As for the kinetic energy per unit volume, it is

1
K= 5N,m?
2 1o
=9 1_)\6(‘”);2 i, (B14)
ew)—1) w?

so that the phonon Hamiltonian can be written as

H:/(K—s—UST—&-Ue)dV

= 7(w)/ <ij + P2> av,

where the integral is taken over the whole volume. This
is the form of Hamiltonian expected for harmonic oscil-
lators. The expression of v(w),

(B15)

[e(w) — €o] [e(w) = €]
e(w) = 1]? [e0 = €xc]

is obtained by means of Egs. (B7), (B8), (B9), (B10),
and (B11).
Introducing the electric potential, we write

Y(w) =27 (B16)

Pw)=- fw =1 V.

= (B17)

Let us consider separately the contributions to the Hamil-
tonian, Hx and Hy, coming from the kinetic and poten-
tial energies, respectively. We have

Hy = CL‘*,:) /w} V4V,
- %/ [V- (z/}w}) —z/}v%] 4V (BIS)
and
Hy = (@) [ Vo Vuav.
() [ [V @Vv) = wVu]av (B19)
with

(B20)

We now focus our attention onto interface phonons.
Then, the electric potential is solution of the Laplace
equation. Therefore, the last term in Egs. (B18) and
(B19) is zero. To evaluate the volume integral of the first
term, we apply Gauss-Ostrogradsky theorem. For the
inside potential, this reduces the integral to the toroidal
surface with an outward-oriented normal. As the nanos-
tructure under study is neutral, at large distance, the
electric potential decreases at least as 7—2 and the electric
field as r—3, with increasing r. Therefore, for the outside
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potential, the integral again reduces to the toroidal sur-
face, but this time with a normal oriented toward torus
inside. For the whole system we obtain

Hie = 5 § (Gl Vb — G (), V) -mads,
(B21a)

Hy = §(G) 5 90— () 9, T0,) -0 ds,
(B21b)

where the index 7 denotes the torus inside, o its outside,
and n the outward oriented torus normal. The dielectric
constants are related by €;(w)/e,(w) = €5, Where €y, is
the eigenvalue of the dielectric-constant ratio correspond-
ing to the oscillation mode under consideration. The con-
tinuity of the potential across the torus and the matching
condition of the electric field imply ¥,(sp) = ¥;(sp) and
n-Vi,(sp) = er(w)n - Vap;(sp) so that

1 . .
H = [6() = @) 6] f (5 Vi + 090 ) mas
(B22)
This is Eq. (11) used in Sec. IV A devoted to the deriva-
tion of the interface-mode Hamiltonian.

Appendix C: The case of bulk LO phonons

As a test, we apply the results of Appendix B to the
case of large-wavelength LO bulk phonons in interaction
with charged particles, i.e., that of Frohlich polarons.?!:39
The angular frequency of the LO bulk modes, wy,, is such
that ¢(wr) = 0; then

-1
1 1
=(——-— . C1
2m ( € €0 ) (C1)
We use a procedure similar to that of Ref. 30 and expand
the polarization into a series of longitudinal plane waves,

(C2)

wr, k ik
P(r) = —qe e,
V2Vy(wr) zk: k

The normalization factor in Eq. (C2) has been chosen so
that the free-phonon energy takes the form of the Hamil-
tonian of a system of harmonic oscillators. We use V' to
denote the sample volume used in the development into
Fourier series. The polarization being real requires that
¢ = —¢—x. The free-phonon total energy, Eq. (B15),
becomes

1 v .
H= 3 Z (G +wi @ qic) 5 (C3)
Kk

which is the result expected for harmonic oscillators. No-
tice that, as ¢ = —q—x,

i e + ¢ x -x = =241 G (C4)



so that the momentum conjugate to gy is

e = OHg
< O
= i (C5)
and the free-phonon Hamiltonian becomes
1 * *
H = 52 (pkpk""w% 0 Q) - (C6)

k

Obviously, py = —p—k.

Quantum mechanics requires that the variables ¢, and
pr be replaced by operators obeying the usual commu-
tation rules [pk,qw] = (A/i)0k k. Introducing phonon
annihilation and creation operators,

= — (p—x + .CU[ C7

Ak —— (p k 1 Qk) ( a‘)

(ZT] = 72 Pk — 'wl q—x C7b
vV 2 hw[ ( ! ) ( )

leads to the usual Hamiltonian of free large-wavelength
LO-phonons

(C8)

1
H = thZ (altak—i— 2) .
k

The choice of the phase in the definition of aL and ay is
custom in Frohlich polaron theory. Working with com-
plex variables, as we did above, can seem unusual. It is
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possible instead to use the real and imaginary parts of
gx as real variables. This is discussed in detail in Ref. 30
and leads to the same final expression for the free-phonon
Hamiltonian, Eq. (C8).

In the case of LO phonons, the polarization is related
to the macroscopic electric potential ¥(r) by

1
P=—

1 V). (C9)

The energy of interaction of a particle of charge —e lo-
cated at r with the macroscopic electric field due to the
LO phonons is Uy = —ew(r). Using Egs. (C9), (C2),
(C7), and (C1), we finally obtain

(C10)

This result coincides exactly with that given by
Frohlich?! in polaron theory. See Ref. 30 for more de-
tail. The factor (1/es —1/€0)? comes from the adiabatic
approximation used to describe the interaction with the
crystal electronic polarization. The fact that we recover
Frohlich’s Hamiltonian in the case of bulk phonons shows
that the role of the electronic polarization is correctly
taken into account in the developments of the present
article.
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